
Embedded Systems Design and Modeling 1

Embedded Systems 
Design and Modeling

Chapter 6
Concurrent Models of Computation



Embedded Systems Design and Modeling
2

Outline
 Introduction
 Structure of models
 Synchronous Reactive systems
 Dataflow MoC:

 Principles
 Synchronous DF
 Dynamic DF
 Structured DF
 Process Networks

 Timed MoCs



Embedded Systems Design and Modeling

Introduction
 Concurrent system: all of the different 

components and parts of the system 
operate simultaneously

 Simultaneity is mainly conceptual
 In reality the parts of the systems might 

only “appear” to operate simultaneously 
like a multithread software

 The semantics of a concurrent system is 
determined by its model of computation 
(MoC)

3



Embedded Systems Design and Modeling

Recalling MoC
 An MoC consists of three rules:

1. What are the components and their structural 
relationship?

2. What mechanism is used to generate 
concurrency or at least the appearance of it?

3. What mechanisms are used for 
communication between the components?

 We will start with the common structures
 An actor network may have a feedback 

structure …
4



Embedded Systems Design and Modeling

Feedback Structure

5

 First, we need to rearrange all of the 
blocks as shown below

 The resulting composition is side-by-side



Embedded Systems Design and Modeling

Single Actor Representation

6

 Then, the side-by-side composition can be 
integrated into a single actor F



Embedded Systems Design and Modeling

Single Actor Representation (Cont’d)

7

 Finally, the single actor can be viewed as 
a feedback system without its details as 
shown below

 Pay close attention to how the connections 
are preserved



Embedded Systems Design and Modeling

Synchronous-Reactive MoC
 Feedback systems have a challenge:

 To know the output, one needs to know the 
input

 To know the input, one needs to know the 
output

 Synchronous-reactive (SR) MoC can 
resolve this

 SR is a discrete system in which the 
signals (input and output) are always 
absent except at ticks of a global clock

8



Embedded Systems Design and Modeling

Synchronous-Reactive (Cont’d)
 The model runs at the ticks only
 At each tick, each component or actor 

reacts to the signals at its inputs
 All reactions are simultaneous and 

instantaneous (i.e., time delays in 
computations are irrelevant)

 SR is synchronous in the same sense as 
synchronous digital circuits

 So, one needs to look at the reactions at 
the ticks only

9



Embedded Systems Design and Modeling

SR Example

10

 Consider this example:
 Due to the feedback input equals output
 Detail examination 

shows that the 
inputs and 
outputs alternate 
between absent 
and present



Embedded Systems Design and Modeling

SR Semantics

11

 Based on our analysis, one can say that 
the semantics of the synchronous-reactive 
model is like this:

 Note that 
there is no 
input anymore 
because it is 
not really 
needed!



Embedded Systems Design and Modeling

Fixed Point Definition
 The previous example has an important 

characteristic:
 If we assumed one form for the input (absent 

or present), we would get the same form for 
the output

 No contradiction between the input and output
 This is called a “fixed point”
 Do all systems have a single fixed point?
 No, there may be no fixed point or more 

than one …
12



Embedded Systems Design and Modeling

No Fixed Point Example

13

 In this example (B), if we assume the input 
to be absent at S1, the output will be absent 
too => a single fixed point at S1

 If we assume the 
input to be 
absent at S2, the 
output will be 
present and vice 
versa => no 
fixed point at S2



Embedded Systems Design and Modeling

Two Fixed Points Example

14

 In system C, if we assume the input to be 
absent at S1, the output will be absent too

 If we assume input to be present at S1, 
the output will be present too

 There are TWO 
fixed points at S1

 S2 still has only 
one fixed point 
(like system B)



Embedded Systems Design and Modeling

Ill/Well-Formed Systems
 Dealing with feedback systems with no 

fixed point or more than one fixed point at 
a state doesn’t provide a deterministic and 
unambiguous behavior

 The exception is when the state is 
unreachable

 So we define: if a state is reachable and 
has no fixed point or more than one, the 
system is called “ill-formed”

 Otherwise, it is called “well-formed”
15



Embedded Systems Design and Modeling

Ill/Well-Formed Determination
 Systems B and C in the previous examples 

are ill-formed
 How can we determine if a system is well-

formed or not?
 Usually, we have to do exhaustive search 

which means trying all possible cases
 Exhaustive search is possible only if the data 

types are finite
 Exhaustive search is practical only if the search 

space is small
 Hence the need for another approach 16



Embedded Systems Design and Modeling

Constructive Systems
 An alternative procedure to determine if a 

system is well-formed or not:
 For each reachable state i:

1. Assume the output s(n) is unknown
2. Determine as much as possible about fi(s(n))
3. Repeat until s(n) becomes known (if it is present or 

not, and if it is, what its value is) or no progress 
can be made

4. If unknown values remain, reject the model

 A state machine is called “constructive” if 
this procedure works, otherwise it is called 
“non-constructive”

17



Embedded Systems Design and Modeling

Non-Constructive But Well-Formed
 A constructive machine is well-formed
 But a machine that fails this procedure 

(i.e., a non-constructive machine) can 
also be well-formed as shown in the next 
example

 The system D has one input and one 
output

 They are not pure, i.e., they have values
 So if they are present, we need to know 

their values
18



Embedded Systems Design and Modeling

Example Continued

19

 If we assume the input to be absent at 
state S1, the output will be absent too => 
there is one fixed point at S1

 If we assume the 
input is present at 
S1, the output value 
will not be known

 Observe that D has 
only one fixed point 
at state S2



Embedded Systems Design and Modeling

Putting It Together
 System D is well-formed but it is non-

constructive because the output is not 
known for all the cases in state S1 and it 
fails the procedure

 So for non-constructive systems, we have 
to do exhaustive search to see if they are 
well-formed or not

20

Systems

Ill-formed Well-formed

ConstructiveNon-constructive



Embedded Systems Design and Modeling

Must-May Analysis
 The tools cannot do exhaustive search
 They do a must-may analysis instead
 Example: system A may not produce an

21

output in state S1
 So input is absent

 In S2, it must have 
an output
 So input is present

 No need to check all 
cases



Embedded Systems Design and Modeling

SR Conclusions
 As mentioned, in SR models actors react 

simultaneously and instantaneously
 This model may not always be a realistic 

model of the physical world and requires 
tight coordination of the actors

 There are other concurrent MoC’s that do 
not require this tight coordination and will 
be discussed next

22



Embedded Systems Design and Modeling

Dataflow MoC
 Lifting the requirement for reactions to 

occur simultaneously allows decentralized 
decisions => the need for another MoC

 In general, the reactions can be 
independent of each other in terms of 
timing

 But they are data dependent, i.e., they 
are based on the flow of data

 Dataflow: an MoC in which constraints on 
reactions are based on data dependencies

23



Embedded Systems Design and Modeling

Dataflow Variations
 There are many forms of dataflow but we 

will only consider:
 Synchronous dataflow or SDF
 Dynamic dataflow
 Structured dataflow
 Process networks

 But we first describe the main principles 
that are common among the various 
forms

24



Embedded Systems Design and Modeling

Dataflow Principles
 In dataflow MoC a signal is a sequence of 

messages
 Each message is called a token
 Two functions describe the system:

 Actor function which maps the entire input 
sequences to the entire output sequences

 Firing function which maps a finite portion of 
the input sequences to output sequences

 The difference between these two will be 
shown in the next example

25



Embedded Systems Design and Modeling

Dataflow Example
 Consider the following actor:

26

 If this is a scale actor which multiplies its 
input sequence by “a”, then:

 If the actor performs one multiplication 
upon firing, then:

 So the output sequence is of length one



Embedded Systems Design and Modeling

Firing Function and Rules
 The firing function doesn’t need to wait for 

a whole sequence to start
 Instead, as soon as enough tokens arrive 

at the input, the firing can occur
 A firing rule specifies how many tokens 

must be received at each input to fire the 
actor

 There may be too many tokens arriving at 
the input to be responded immediately => 
need some form of buffering mechanism

27



Embedded Systems Design and Modeling

Firing Function and Rule (Cont’d)
 When firing occurs, the required tokens 

will be consumed
 After a token is consumed, it can be 

discarded
 An unconsumed token remains in the 

buffer until it is consumed
 This means if the rate of token arrival is 

higher than the rate of token 
consumption, a buffer overflow may 
happen over time

28



Embedded Systems Design and Modeling

Unbounded Execution
 A model should be able to run for a very 

long time which is called “unbounded 
execution”

 1st problem is to have scheduling policies 
that guarantee unbounded execution with 
bounded buffers

 2nd problem is to prevent a “deadlock” 
which is when there is not enough tokens 
to start the system

 A delay actor can help with deadlocks
29



Embedded Systems Design and Modeling

Synchronous Dataflow
 In general, the two problems mentioned 

earlier are undecidable, i.e., there is no 
algorithm to find their answer

 But with some restrictions on the 
dataflow, the problem can become 
decidable

 For example, each actor in a Synchronous 
Dataflow (SDF) consumes a fixed and 
known number of input tokens and 
produces a fixed number of output tokens

30



Embedded Systems Design and Modeling

Clarification
 The terminology is rather misleading and 

confusing:
 Synchronous dataflow is NOT synchronous 

(like the SR MoC)
 There is no global clock in SDF in contrast to 

SR 
 There is no particular timing requirement for 

the production and/or consumption of tokens
 The overall rate of production and 

consumption should be the same

31



Embedded Systems Design and Modeling

SDF Example
 Consider this SDF:
 When A fires once, M

32

tokens are produced. If it fires qA times, 
qAM tokens are produced

 If B fires once, N tokens are consumed. If 
it fires qB times, qBN tokens are consumed

 The balance equation that ensures 
unbounded execution is therefore:



Embedded Systems Design and Modeling

Balance Equation Example
 For M=2 and N=3, qA can be 3 and qB can 

be 2 to satisfy the balance equation
 Any order of tokens that keeps qA and qB

can be repeated forever
 Examples: A,A,A,B,B or A,A,B,A,B
 The difference between different orders is 

the amount of memory buffer they need
 Generally, the least positive integer values 

for qA and qB are the best

33



Embedded Systems Design and Modeling

Example With Three Actors
 In this example, there are 3 connections 

and 3 balance equations
 These equations have a non-zero set of 

solutions
 The least positive integer solution is qA = 

qB = 1 and qC = 2
 So this SDF is called “consistent”

34



Embedded Systems Design and Modeling

Consistent vs. Inconsistent SDFs
 The three balance equations in this 

example don’t have a non-zero set of 
solutions

 There won’t be an unbounded execution 
with bounded buffers

 So this SDF is called “inconsistent”

35



Embedded Systems Design and Modeling

Consistency Observations
 The balance equations solve the 1st

problem:
 If the balance equations have a non-zero 

solution, a positive integer solution exists
 If so, the scheduling problem for SDFs can be 

solved (consistent SDF)
 Consistency is necessary and sufficient 

condition for bounded buffer
 Consistency is necessary but not sufficient 

condition for unbounded execution
36



Embedded Systems Design and Modeling

Deadlock Problem
 The 2nd problem (deadlock) can also 

prevent the unbounded execution
 Delay actors which can be viewed as initial 

tokens can solve this problem (why?)
 This SDF requires at least 4 initial tokens 

to start

37



Embedded Systems Design and Modeling

Dynamic Dataflow
 SDF is decidable but not very expressive:

 Cannot express conditional firing
 Dynamic dataflow (DDF) addresses this 

shortcoming:
 DDF actors can have multiple firing rules
 The number of output tokens can be different 

depending on the input token values
 Other than delay, two other basic actors:

 Switch
 Select

38



Embedded Systems Design and Modeling

Select And Switch Actors
 Select actor requires one Boolean 

(true/false) token at the bottom input:
 If true, the top left input port is activated
 If false, the bottom left input is activated

 Switch actor has the complementary 
function

39



Embedded Systems Design and Modeling

DDF Example
 In this system, actor B produces the 

conditional tokens for select and switch
 The fork repeats the same token twice
 Acts like if-then-else in software

40



Embedded Systems Design and Modeling

Structured Dataflow
 While DDF models support conditional 

firing, they are not decidable
 Structured dataflow models support 

conditional firing and they are decidable:
 Conditional control is achieved hierarchically
 Arbitrary data-dependent token routing is 

avoided (like “goto” statements)
 The overall model is still an SDF

 Hence, the model is decidable
 Consider next example…

41



Embedded Systems Design and Modeling

Structured Dataflow Example
 Each actor produces/consumes 1 token 

=> unbounded execution + no deadlock

42



Embedded Systems Design and Modeling

Process Networks
 Kahn process networks or PN:

 All actors execute simultaneously (this is 
different than SR which reacts simultaneously 
and SDF which waits for an input token)

 No firing functions, i.e., each actor 
continuously reads data tokens from input and 
writes data tokens to output

 A key to ensure determinism is blocking reads 
which mean the actor stops until data is ready

 The write to output(s) is non-blocking
 Original PN is not decidable (revisions are)

43



Embedded Systems Design and Modeling

Concurrent MoC’s And Time
 Notion of time in concurrent MoC’s:

 SR: Time is represented by a global clock only, 
but the clock just determines the sequence of 
events, so time is irrelevant

 Global clock may not be periodic or its rate 
may vary without any effect on the system

 DF, SDF, DDF, Structured DF: Time plays no 
role at all

 In many cases, modeling a cyber-physical 
system requires explicit notions that 
represent the actual passage of time

44



Embedded Systems Design and Modeling

Timed MoC’s
 Hence the need for models which can 

represent the actual and exact passage of 
time explicitly

 Compared with the previous MoC’s:
 A time-triggered model is somewhat similar to 

SR as there is a notion of time
 But events are NOT simultaneous and 

instantaneous, i.e., computations have an 
execution time

45



Embedded Systems Design and Modeling

Timed MoC’s (Continued)
 Specific considerations for timed MoC’s:

 The inputs are available at the tick of a global 
clock

 Computations have as much time as the 
duration of the clock to finish

 The outputs will be available at the tick of the 
next clock

 No interaction among actors occurs b/w clocks
 No room for the race condition
 Feedback is allowed => all models are 

constructive
46



Embedded Systems Design and Modeling

Modeling Time
 Depending on the nature of the system, 

the time can be modeled in two different 
forms:
1. As a mere sequence of events in which the 

passage of time is not important but the 
arrival of time is
 This form is called Discrete Event systems (or DE)

2. Continuous time systems in which the specific 
passage of time plays a role in determining 
the behavior of the system

47



Embedded Systems Design and Modeling

Discrete Event MoC
 In DE:

 An event is a signal that occurs at a specific 
point in time

 Events carry a value and a time stamp which
 indicates the time at which the event occurs
 is typically generated by the actor that produces the 

event
 is determined by the time stamp of input events and 

the latency of the block
 Global time is known simultaneously 

throughout the system

48



Embedded Systems Design and Modeling

Discrete Event MoC (Cont’d)
 The system is seen as a network of actors that 

react according to their specific time stamps
 The time stamps are compared and the actor 

with appropriate time stamp is executed
 DE MoC’s are also called “event-driven models”
 DE MoC’s useful for modeling distributed/parallel 

HW or SW and their communication infrastructure
 A DE simulator (like event-driven HDL tools) 

needs to:
 maintain a global event queue that sorts the events by their 

time stamps
 chronologically process each event by sending it to the 

appropriate actor which reacts to the event 49



Embedded Systems Design and Modeling

DE Implementation
 Usual implementation of DE:

 Prepare a list of events to be sorted based on 
time stamps (called “event queue”)

 Populate the queue with the initial events
 Start the execution by shifting the time to the 

first event in the list
 Execute the first event, if a value is generated, 

present it to the receiving actor
 The receiving actor might fire and produce an 

output
 Update the event queue
 Execute the next event in the list 50



Embedded Systems Design and Modeling

DE Challenges
 Important questions:
1. Can an actor have a zero delay (i.e., 

instantaneous reaction)?
 Answer: some variants don’t allow that but 

some do
 If they don’t allow that, there won’t be any problem 

with the feedbacks
 If they do, there will be some problems with the 

feedback
 Have to resolve those problems like a fixed 

point in the SR systems

51



Embedded Systems Design and Modeling

DE Challenges (Continued)
2. What would happen if two or more events 

have the same time stamp, i.e., when 
two events occur simultaneously?
 If one actor output has the same time stamp 

as input, the same as last question
 If more than one event is ready to be fired at 

the time stamp, then fire them all
 When there is no feedback, no difficulties
 If there is a feedback among the actors, then 

treat them like SR and look for a fixed point
 Might require instantaneous firing

52



Embedded Systems Design and Modeling

Other Timed MoCs
 There are other types of discrete timed-

MoC’s:
 The most important one is Petri Nets
 The book doesn’t cover it well
 It will be covered separately at the end

 Continuous-time MoC’s:
 The most important one is ordinary differential 

equations (ODE’s)
 Cannot be solved easily using computers
 Have to convert them into difference equations 

to solve them
53



Embedded Systems Design and Modeling

Concluding Remarks
 Chapters 7-10 deal with the 

implementation issues in the design of 
embedded systems

 Often covered in BS courses, won’t be 
covered in this course

 Next topic will be Petri Nets
 Then will move on to multitasking through 

multithreading (Chapter 11)
 Chapter 6 homework: 1, 3, 4, 8, 9, 10
 Due date Tuesday 1404/1/26

54


